
.' 

NASA Technical Memorandum 106919 

A Combined Geometric Approach for Solving the 
Navier-Stokes Equations on Dynamic Grids 

(NASA-TM-106919) A COMBINE0 
GEOMETRIC APPROACH FOR SOLVING THE 
N A V I E R - S T O K E S  EQUATIONS ON D Y N A H I C  
G R I D S  ( N A S A .  L e w i s  Research 
C e n t e r )  9 p 

John W. Slater 
Lewis Research Center 
Cleveland, Ohio 

Prepared for the 
Conference on Numerical Methods for Fluid Dynamics 
sponsored by the University of Oxford and Reading 
Oxford, England, United Kingdom, April 34 ,1995 

I 
N9 5-2 60 7 5 

Unclas 

I 
I 

6 3 / 0 2  0048310 

I '  i 

National Aeronautics and 
Space Administration 

I 



1 

A Combined Geometric Approach for Solving 
the Navier-Stokes Equations on Dynamic Grids 

NASA Lewis Research Center, Cleveland, Ohio, USA 
Abstract 

A combined geometric approach for solving the Navier-Stokes equations 
is presented for the analyaia of planar, unsteady flow about mechanism 
with components in moderate relative motion. The approach emphaaizes 
the relationship between the geometry model, grid, and flow model for 
the benefit of the total dynamica problem. One application is the analysis 
of the restart operation of a variable-geometry, high-speed inlet. 

John W. Slater 

1 Introduction 
The computation of the unsteady flow about mechanisms with components in 
relative motion has become an important topic in computational fluid dynamics 
(CFD) (Mani and Haney 1994, Atwood 1994, Wang and Yang 1994, Trkpanier 
et al. 1993). One such mechanism is the NASA Variable Diameter Centerbody 
(VDC) inlet in which the axisymmetric centerbody can translate and change 
diameter to adjust the mass flow rate and stabilize the flow. 

When the components of the mechanisms are in relative motion, the geometry 
modeling, grid generation, and flow modeling aspects of the CFD analysis process 
all become functions of time. The combined geometric approach emphasizes the 
geometry model and its relationship with the grid and flow model for the benefit 
of the total dynamics problem. The following sections discuss the approach and 
present some applications to demonstrate the concepts and performance. 

2 Geometry Modeling 
The geometry model is constructed of geometric entities representing each com- 
ponent of the mechanism. This allows for accurate modeling of the mechanism 
and specification of the component kinematics. The work presented here consid- 
ers a planar geometry model as would be needed for a two-dimensional or ax- 
isymmetric CFD analysis. Each geometric entity is represented mathematically 
as either a linear or cubic spline curve using a parametric coordinate correspond- 
ing to the arclength along the entity. Each component is assumed to move only 
as a rigid body. Thus, the geometric entities only require modeling at the start 
of the computation. During the computation, geometric information is obtained 
from the geometry model as a function of the geometric entity, parametric co- 
ordinate, and time. The information includee: the position, velocity, tangent, 
normal, acceleration, second-derivative, and curvature. 

A mechanism used to illustrate the concepts is the NASA Variable Diameter 
Centerbody (VDC) inlet (Saunders and Linne 1992). The VDC inlet is a mixed- 
compression, high-speed inlet designed to operate at a Mach number of 2.5 with 
a 45% internal compression using a biconic centerbody. The second and aft 
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FIQ. 1. The planar geometry model of the NASA VDC inlet. 

cones of the centerbody consist of overlapping leaves which form an umbrella 
mechanism which allows the diameter of the centerbody to change to vary the 
mass flow of air entering the inlet. The centerbody may also translate. Figure 1 
shows the planar geometry model with the individual entities identified. 

The change in diameter of the centerbody is modeled by specifying the r e  
tation of the geometric entities defining the second and aft cones about their 
respective points of rotation. The translation of the centerbody is modeled by 
specifying the translation of the geometric entities defining the centerbody. 

Included in the geometry modeling is the domain modeling in which a bound- 
ary is created to define the enclosed space which becomes the flow domain. The 
boundary will consist of the geometric entities and domain boundary entities. 
The domain boundary entities are mathematically defined in the same manner 
as the geometric entities. In Fig. 1, the domain boundary entities include the 
inflow, farfield, and outflow entitiea. The relative motion of some of the geomet- 
ric entities requires that some domain boundary entities be of variable geometric 
representation. In Fig. 1, the bleed slot entity will be of variable representation 
as the second and aft cones rotate. 

3 Grid Generation 
The motion of the geometric entities means that the grid may require some re- 
generation each time step. This requires an efficient grid generation approach. 
A multi-block, structured grid topology is used with grid lines matching con- 
tiguously across blocks. This topology provides for accurate and efficient com- 
putation of turbulent, viscous flows. Further, the moderate levels of component 
motion did not warrant a more complex topology. 

The topology of a block is defined by specifying the entities of the geometry 
model which comprise the faces of the blocks. The boundary between blocks 
is defined by a block interface, which is represented in the same mathematical 
form as the geometric and domain boundary entities and is considered part of 
the geometry model. The topology of the block is assumed to remain fixed 
throughout the computation. This imposes a limitation on the extent of the 
motion of the entitiea, but it allows for efficient grid generation. 

Quality dynamic grids are efficiently obtained by dividing a block into smaller 
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FIG. 2. The block and sub-block boundaries for the grid for the VDC inlet. 

sub-blocks according to the geometric features of the entities. Also, the amount 
of regeneration of the grid can be minimized to include only those sub-blocks 
having dynamic boundaries. The shape of a sub-block boundary is defined using 
a two-point cubic spline with the endpoint tangents specified by the normal 
vectors of the entities at  the endpoints. Figure 2 shows how the flow domain for 
the VDC inlet is divided into two blocks with sub-blocks. The orthogonality of 
the sub-block boundary curves at the entities can be seen. This results in an 
interior grid which also has orthogonality. 

An automated procedure determines the grid density and spacing along the 
boundary of the sub-block based on global grid quality parameters such as mini- 
mum and maximumgrid spacing and maximumgrid spacing ratio, the geometry 
model, and the flow boundary conditions. Local grid quality parameters asso- 
ciated with entities can also be specified. A hyperbolic tangent method is then 
used to distribute the grid points along the boundaries. Using the geometry 
model assures that the boundary grid points are placed on the entities and the 
dynamics of the boundary grid points are precisely defined. 

The generation of the volume grid and grid dynamics is performed efficiently 
through the use of an algebraic, transfinite interpolation method applied for each 
sub-block. Only thoee sub-blocks with motion over a time step require regener- 
ation. Several strategies exist for generating the dynamic grid. First, the grid 
coordinates can be regenerated with grid speeds computed through a backwards 
time difference. One problem is how to compute grid speeds at the starting time 
of the computation when no previous grids exist. Also, the grid dynamics may 
lag the geometry dynmica. A second strategy involves using grid deformations 
on the boundary to compute interior deformations using a transfinite interpe 
lation. This is mn t i a l ly  the same as the first strategy, but may be a better 
numeric formulation depending on the finite-volume approximation. The third 
strategy involves using the boundary grid speeds to compute the interior grid 
speeds through a transfinite interpolation. The grid is then obtained through a 
time integration. This has the advantage that grid speeds can be computed at 
the starting time and represent the current motion of the geometry. An example 
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FIQ. 3. A grid for a thrust-vectored nozzle. 

of the application of the grid generation approach is shown in Fig. 3. 

4 Flow Modeling 
The Navier-Stokes equations for a timevarying control volume are 

U , + R = o  

where o = l ( t ) U  dV and R =  i(tl H - ii dS. 

The U is the algebraic vector of conservative variables UT = ( p, pu, pu, Et ) 
where p is the density and u and u are the flow velocity Cartesian components. 
The Et is the total energy per unit volume. The V is the volume and S is the 
surface area. The A is the surface normal vector. The H is the flux dyadic, 
which for a mixed Eulerian-Lagrangian description (Vinokur 1989) is, 

H = F-ZU. (4.2) 

The 9’ is the velocity vector of the control surface, 9’ = Z r i  + vrj. An Eulerian 
description is obtained for 9’ = 0 while a Langangian description is obtained 
for 9’ = v. The F is the Cartesian flux dyadic. The flow model is complete 
with Sutherland’s formula, the definition of the Prandtl number, a perfect gas 
assumption, Reynolds averaging, and the Baldwin-Lomax turbulence model. 

The approach associatea the flow boundary conditions with the geometry 
model entities. For example, the entities representing the centerbody are spec- 
ified as solid wall boundary conditions. The flow boundary condition modeling 
makes use of the geometry model. Consider the physical condition for a slip wall, 

p ( f  -J).A = m, (4.3) 

where m is the mass flux. The surface normal vector A is computed from the ge- 
ometry model rather than the local grid. Other flow boundary condition models 
use the wall tangent vector and curvature computed from the geometry model. 
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FIG. 4. A simple hinged flap. 

5 
A cell-vertex, finite-volume approximation is used for the spatial discretization 
of eqn 4.1. The temporal discretization uses an explicit, two-stage Lax-Wendroff 
method (Liou and Hsu 1989) of the form 

Time-Dependent Computation of the Dynamics 

U *  = o n  + A r R n ,  (5.1) 

~ * * = ~ *  +A.rR” ,  (5.2) 

(5.3) 
and 

6 n+l = ( 6 n  + 0 * * ) / 2 .  
The inviscid fluxes are computed using the Roe flux-difference splitting with 

a TVD limiter. The viscous fluxes are computed using differences and averages 
computed at the cell faces. The V needed to decode 6 is computed from the ge- 
ometric conservation law (Thomas and Lombard 1979) which relates the change 
in volume of the cell to the motion of the cell faces. The geometric conservation 
law for the explicit method follows the form of eqns 5.1 to 5.3 with U = V and 
R = 2 where 2 is the vector sum of the speeds of the cell faces. 

6 Application: Simple Hinged Flap 
A simple mechanism is a flat plate with a flap which rotates about its hinge 
in a sinusoidal manner with an amplitude of 15 degrees and a period of 0.03 
seconds. An inviscid flow analysis with a freestream Mach number of 2.0 was 
performed. As the flap rotates, oblique shock wave8 and corner expansion fans 
develop and dissipate. The computed Mach numbers on the flap surface can be 
compared to those from steady-state, inviscid theory to obtain some evaluation 
of accuracy. As can be Been in figure 4, the compressions compared well, but 
during the expansions, the Mach number was slightly leas than theory. The fluid 
and flap motion time scales were of the same order of magnitude and dynamic 
effects may have been more significant in the expansion process. 
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The performance of dynamic grids for the computation of turbulent, viscous 
flow was examined for a hinged-flap for a Reynold’s number of 1 . 0 ~ 1 0 ~ .  The flap 
was set to rotate sinusoidally for an amplitude of 20 degrees with a time period 
of 0.01 seconds for three time periods. The amount of CPU usage required for 
the computation depends on the level of grid dynamics, which can be computed 
as the time average of the percentage of grid points that are regenerated for the 
time interval of the computation. For the flap analysis, the grid dynamics level 
was 71%. At this grid dynamics level, the increase in the CPU usage was about 
31% over the CPU usage required for a computation on a static grid. 

7 
In normal cruise operations of the VDC inlet, a normal shock is positioned just 
aft of the throat. Flow disturbances can cause the shock to move forward of 
the throat and unstart the inlet. The restart of the inlet involves a forward 
translation and reduction of the diameter of the centerbody and an opening of 
the bypass doors to reduce the back pressure at the compressor face. 

An inviscid, axisymmetric flow analysis demonstrates the importance of the 
variable geometry in the analysis of the restart process. The freestream Mach 
number was 2.5 with a cornpressor face Mach number of 0.31. An impulse in 
the Mach number of a magnitude of - 0.12 was applied at the compressor face 
over a time interval of 0.01 seconds. The shock moved forward of the throat 
and the inlet was unstarted. At 1 = 0.04 seconds the restart was initiated. The 
centerbody translated a distance of 0.2 units forward and the second cone rotated 
from an angle of 18.5 degrees to an angle of 12.5 degrees, which is equal to the 
angle of the nose cone. The time interval of the centerbody motion was 0.04 
seconds. The compreasor face Mach number was increased from a value of Mach 
0.31 to 0.50 over a time interval of 0.01 seconds to simulate the reduction of the 
back pressure. At 1 = 0.15 seconds, the normal shock returned to the diffuser 
and the inlet was returned to normal operating conditions. Figure 5 shows the 
sequence of Mach number contours for the unstart / restart process. 

The amount of diameter change required to restart the inlet was greater than 
that reported in the wind tunnel tests. This may be due to the limitations of the 
inviscid analysis. It was determined that the dynamic grid generation increased 
the amount of CPU usage by about 21% for a dynamic grid level of 24% for the 
time interval starting from the initiation of the restart process. Other analyses 
were performed and it was determined that the inlet a u l d  not restart without 
moving the centerbody, regardless of the level of reduction of the back pressure. 

8 Conclusions 
The combined geometric approach provides a natural formulation of the total 
dynamics problem for dynamic grid CFD analysis methods. The geometry mod- 
eling and grid generation become more important for dynamic geometries and 
their relationship with the flow modeling can be used effectively for the benefit 
of the total dynamica problem. 

Application: Restart of the NASA VDC Inlet 
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FIG. 5. Sequence of Mach number contours for the inviscid flow during the 
unstart / restart process of the VDC inlet with centerbody motion. 
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